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ABSTRACT 

Bayesian techniques are used to evaluate the seeding factor on 
rainfall and its probability distribution in the Experimental Meteorology 
Laboratory randomized dynamic seeding experiments on isolated cumuli in 
Florida. A framework is constructed for later use of these tools with 
the randomized multiple cumulus seeding experiment in the 4000 n mi 2 

target area. 

The data used are the cloud base integrated rainfall volumes ob­
tained by a calibrated 10-cm radar which was tested against a gage net­
work. The analyses are based on the finding that the seeded and control 
data are both well fitted by a gamma distribution with the same shape 
parameter. Since seeding alters only the scale parameter, Bayes equation 
is adapted to finding the distribution of the scale parameter and/or the 
seeding factor directly. The natural distribution is determined by the 
best-fit gamma function to the control cloud data. A wide variety of 
prior distributions of scale parameter are used, with prior expected 
seeding factors ranging from 0.5 to three. After seeing the seeded cloud 
data, posterior expected seeding factors range from slightly below two to 
slightly above three, depending upon the prior distribution assumed. The 
95 percent integrated probability range for seeding factor is established, 
which is not extended to values less than one (reduction in rainfall) 
even under absurdly biased initial assumptions. 

The final section endeavors to determine how many observations 
are required to establish the parameters of the gamma distribution 
adequately for seeding factor determinations. A program is devised to 
generate random "rain" observations from a predetermined gamma distribu­
tion. Then the parameters are recovered in the same way as done for the 
data, namely with a program based on the principle of maximum entropy. 

iv 



ON THE USE OF GAMMA FUNCTIONS AND BAYESIAN ANALYSIS 
IN EVALUATING FLORIDA CUMULUS SEEDING RESULTS 

Joanne Simpson, Jane C. Eden, Anthony Olsen and Jacques Pezier 

1 . INTRODUCTION 

The randomized single cumulus experiments in south Florida in 1968 

and 1970 were only the first phase in a continued program to develop dyn-

amic seeding as a tool in water management, in convective cloud research, 

and in eventual severe storm modification. The Experimental Meteorology 

Laboratory (EML) is now at work on an extended series of multiple cumulus 

seeding experiments in a 4000 n mi 2 target area, which present much 

greater obstacles both scientifically and operationally. 

Aspects of the EML randomized dynamic seeding experiments on single 

cumuli have already been reported in the literature (Sim~son et al., 1970; 

1971; Simpson and Woodley, 1971). Classical statistical analyses 

showed that the seeded single clouds grew higher and rained more than the 

controls, with an average radar-measured rainfall difference of 270 

acre-ft. Differences were significant at the 5 percent level or better, 

using several types of statistical tests. Most of the tests were executed 

on a set of "transformed" data, which were obtained by taking the fourth 

root of the total rainfall obtained by radar integration from each cloud. 

This transformation was made to eliminate the effects of extremes and to 

render the data distribution more nearly normal. Using this procedure, 

we were able to obtain a quantitative estimate of the seeding factor on 

single cloud rainfall, namely that it slightly exceeded three 

(Simpson et al., loc. cit., 1971). A particularly interesting result 

with the transformed data sets was that they were well fitted by gamma 



distributions, with virtually unchanged shape parameters between seeded 

and control sets (Simpson, 1972). The data are presented in table 1. 

Details of how they were obtained have been explained by Woodley (1970), 

and Woodley and Herndon (1970). 

Table 1. Single Cloud Data for 1968 and 1970. 

Total cloud 1 i fetime 
Seeded rain Cont ro 1 rain 

Acre-feet Fourth root Acre-feet Fourth root 
(raw) (transformed) (raw) (transformed) 

129.6 3-37405 26. 1 2.26027 
31.4 2.36719 26.3 2.26459 

2,745.6 7.23868 87.0 3.05408 
489. 1 4.70272 95.0 3.12199 
430.0 4.55373 372.4 4.39291 
302.8 4.17147 0 0 (1)1< 
119.0 3.30283 17.3 2.03944 

4. 1 1. 42297 24.4 2.22253 
92.4 3. 1004 11.5 1.84151 
17.5 2.04531 321 . 2 4.23344 

200.7 3.76389 68.5 2.87689 
274.7 4.07113 81.2 3.00185 
274.7 4.07113 47-3 2.6225 

7-7 1 . 6658 28.6 2.31255 
1 ,656.0 6.37918 830. 1 5.36763 

978.0 5.59223 345.5 4. 31134 
198.6 3-754 1,202.6 5.88885 
703.4 5.14992 36.6 2.45963 

1,697.8 6.41906 4.9 1.48782 
334. 1 4.27532 4.9 1 . 48782 
118.3 3.29797 41 . 1 2.53198 
255.0 3-99609 29.0 2.3206 
115. 3 3.27686 163.0 3.57311 
242.5 3.94619 244.3 3-95349 
32.7 2.39132 147.8 3.48673 
40.6 2.52424 21.7 2.15832 

·" S1nce some of our computer programs Involve products of the data and 
will not accept zero, one acre-ft has usually been substituted for zero 
for this observation. 

In 1971 the senior author attended a Decision Analysis course at 

Dartmouth College, taught by the fourth author, with a primary purpose of 
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adapting Bayesian analysis to the design and analysis of the EML modifi-

cation experiments. Used together with the properties of gamma functions, 

Bayesian techniques have produced some new results for the single cloud 

experiments and opened up promising approaches to the multiple cloud 

seeding or area experiments. Here we present mainly the results from 

applying the techniques to the single cloud data while building up the 

framework to use with the area data, for which preliminary results will 

be presented in a sequel paper. 

With the single clouds, the sample of cases is more extensive (26 

seeded and 26 control cases) than we will·-P'r6bably be able to obtain for 

some years in the area expedment. Furthermore, the radar calibration 

for 1968 and 1970 was found (Woodley and Herndon, 1970; Herndon et al ., 

1971) to be quite accurate'. Hence these data appear ideal to adaptation 

and proving out the application of Bayesian techniques to cumulus modifi-

cation. Errors in the data are considered in other EML reports; in this 

one they are assumed correct as given in table 1. 

2. BACKGROUND FOR THE BAYESIAN APPROACH AND THE 
APPLICATION OF GAMMA DISTRIBUTIONS TO THE DATA 

The Bayesian approach to seeding problems offers major attractions 

and also poses some difficulties. One attraction is that the use of 

Bayes equation permits a numeri·cal assessment of the magnitude of a seed-

ing factor, together with a probability distribution for it, whose stand­

ard deviation goes down as the data sample increases. This type of result 

contains considerably more information than does the mere rejection of the 
1Unfortunately raingage comparisons suggest that it deteriorated in 1971, 
the second year of the area experiment, further complicating evaluation 
of that already too sparse data sample. 
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null hypothesis which is all that many classical tests seek to 

establish. 

We reject the common criticism of the Bayesian approach which 

contends that subjective prior probabilities may introduce bias: firstly, 

because we usually use diffuse prior probabilities and secondly, because 

we test the sensitivity of our results to a very large number and many 

different types of prior probability distributions. 

A very real difficulty, however, in applying Bayesian statistics 

to weather modification is that to do so we must know the distribution 

of natural property or properties to be modified. This requirement en-

tails that we know the distribution function and its sufficient statist-

ics, which generally implies two moments of the distribution. It also 

implies that we assume that the natural distribution function remains 

stationary in time. In our work, this assumption is far less dangerous 

than in many other uses of the approach, since we screen out all but fair 

convective days in south Florida summers. 

A key first result was that the single cloud transformed (fourth 

root) rainfall data was well fitted by a gamma· distribution. The gamma 

probability density function may be written 

a a-1 
p ( R) ~ 8 R nar 

-13R 
(1) e 

where p(R) is the probab.ility density of a rainfall amount, R. The 

scale of the distribution is determined by the parameter B and the 

shape by the parameter a. f is the gamma function (cf. Pearson et al., 

1957). The first two moments of the gamma function are well known to 

be (Kendall and Stewart, 1963): 

4 



)1
1 

= <R> = a/B 

and (2) 

where <R> is the expected value and o2 is the variance. Therefore, the 

coefficient of variation V is 

v - 0 ---<R> 
1 

ra (3) 

We developed a computer program (DAMAX) utilizing the principle 

of maximum entropy (Tribus, 1969, p. 197) to find the best fit.distribu-

tion (from a desired number of possible distributions) for any set of data. 

The program also calculates the key parameters for each distribution, e.g. 

a and B for the gamma distribution 2 and also a chi-square measure of 

goodness of fit. An early version of the program is listed in a report 

by Simpson & Pezier (1971) and the latest version can be obtained from 

EML on request. 

Using this program we found (Simpson, 1972) that the gamma distrib-

ution excellently fit the EML single cloud transformed rainfall data, for 

both seeded and control populations separately. It turned out that the 

coefficient of variation was virtually identical for the two populations, 

which differed in their expected values. Thus the shape parameter appeared 

to be unaffected by seeding, which only diminished the scale parameter, so 

that the whole distribution was moved toward higher rainfalls. With 

V ~ 0.377, it also turns out conveniently that the shape parameter is 
2 "which are shown to be identical to those obtained by classical 

statistical methods. 
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about 7, an integer, which greatly simplifies calculations using (1). 

Sequel work has treated the data without any transformations, hereafter 

called "raw" data, in which Cl. is not an integer. 

3. COMPOSITE HYPOTHESIS TESTING WITH BAYES EQUATION 
TO ESTIMATE THE MAGNITUDE OF THE SEEDING FACTOR -

SINGLE CLOUD TRANSFORMED DATA 

One of the fine features of Bayesian statistics is that it can be 

used to estimate the magnitude of the seeding factor and also the inte-

grated probability that its magnitude lies between any predetermined 

limits. In the following we will apply Bayes equation to the scale para-

meter B, and directly to the seeding factor, using both raw and trans-

formed data. Transformed or fourth root data will be denoted by primed 

quantities throughout, while unprimed quantities refer to raw data. 

First, we use Bayes equation to obtain a probability distribution 

for the gamma function scale parameter B', using transformed data, namely 

p(B'ID') = p(B') p(D'IS')/p(D') (4) 

where p(S' Jo') is the probability density distribution of the parameter 

given the seeded data. p(B') is the prior probability assignment of B'. 

p(D'IB') is the probability of the data, givenS', while the denomin-

ator, p(D'), is the probability of the data, a normalizing factor only. 

It is assumed that both seeded and control distributions are gamma distrib-

6 



utions with a' ~ 7 in the transformed sets, while B' (control) was 

evaluated as 2.38620 from <R'> control~ 2.93353 (acre-ft)' 2 s 

The next pre] iminary step is to relate B' to seeding factor F; 

results are presented in table 2 and figure 1. Note that the tabulated 

seeding factor always relates to raw data. We obtain the B' in the 

table as a function of seeding factor as follows: 

<R> seeded 
F = <R> control 

B' (control): 
a' 

= <R'> 
control 

R is raw rainfall in acre-ft 

7 
~ <R'> 

cont ro 1 

B' (seeded) a' 
~ ---- where we assume for the moment that 

<R'> seeded 

<R '> seeded <F> · 2 s <R'> 
control 

(5) 

(6) 

(7) 

(8) 

This approximation is discussed at the end of the current section 

and is shown to cause only a slight positive bias for seeding factors 

in the range of interest. 

7 



3 

t 

0 

RELATION BETWEEN p' AND F 

2 

SINGLE CLOUDS 
TRANSFORMED RAINFALL 

DATA 1968-1910 

4 
F--

6 8 to 

Figure 1. Graph showing reLationship between seeding factor F and 
gamma function scaLe parameter S' for singLe cLoud transformed 
(fourth root) data. F and S' are determined as specified by 
equations (5) and (6). 
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TcibZe 2. Relation F!etween Seeding Factor F and S' Gamma 
Distribution's ScaZe Parameter. 

F 
0.25 
0.5 
0.8 
1 
2 
3 
4 
5 
7 

10 

Single Cloud Transformed Data 

a'= 7 

S' 
3-37460 
2.83769 
2.52310 
2.38620 
2.00650 
1.81312 
1 • 68730 
1. 59575 
1 .46701 
1 • 34186 

The analysis with (4) is carried out in two ways on the transform-

ed data. The first way assumes a gamma function for the prior probability 

distribution of S'and the second assumes a uniform dtstribution for the 

prior. 

1 n the fi. rst approach 

K1 K1-1 -K2S' 

P (S? = K2 
r (K1) S' e (9) 

where K1 is the shape parameter and K2 the scale parameter of the prior 

probabi 1 i ty distribution assumed for S'. 

Now we know that 

p(D'jS•)= 
-S' R I. 

I 
e 

9 

( 10) 



where n is the number of seeded cases and R'i is the transformed rainfall 

in the ith seeded case. Substituting (10) and (9) into (4) we find 

( 

n 

.E 
p(S'[D') = I = ~ 

n 

R' + K na' + K1 na' + K -1 -S(. L R'. + K ) 
• 2 s' 1 

e I = 1 I 2 

K1 
( 11 ) 

The normalizing constant is found from the exponents, since we know the 

resulting distribution is also a gamma distribution. Now since n 26 

and a'= 7, the shape parameter of the posteriors' d·istribution is very 

large, namely here 182 + K . According to Thom3 when the scale parameter 
1 

exceeds about ten, the gamma distribution degenerates, for all practical 

purposes, into a Gaussian distribution. Therefore, with this approach our 

posteriorS' distributions can be treat.ed as Gaussian, which means that 
I 

the p robab i 1 i ty is about 95% that the va 1 ue of S 1 ies within two standard 

deviations of the expected value. This information is used later in 

tables 3 and 4. We further know that 

<S'[o'>= 
na.'+ K1 
n 

LR'.+ K2 
i=l 

I 

a'+ 
K1 

= n ( 12) 
'R!+ K2 

I n 

so that 

1 i m <S'lo'>= a' ( 13) 
n- large "R~ 

I 

and 

v2 (S'[ D~ 
1 = 

nct1 + K1 
( 14) 

3 Personal communication 
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With any gamma function for the prior probability distribution on S' we 

find that in the limit of large n 

S' = 1.80459 so that F = 3.07 ( 1 5) 
n -- 1 arge 

in fine agreement with the results of the classical statistical analysis 

ofSimpsonetal., (1971). For this analysis we use t~10 prior S'dis-

tributions, the first with K1= 12 (peaked, see fig. 2) and the second 

with K1 = 2 (much flatter, see fig. 3). 

Results for both priors with a wide range in the prior expected 

value of S' are presented in tables 3 and 4. Figures 2 and 3 compare 

plots of both prior (dashed) and posterior (solid) probability density 

distributions for selected cases from the tables. 

Table 3. Transformed Single Cloud Data. 

K1 = 12 
Prior S 'Peaked Gamma Function Posterior §'Gaussian 

Prior <S '> F Post <S'> F F for 95% Prob. 

2.83769 0.5 1 . 84617 2.8 1. 4 - 5.2 

2.38620 1. 83222 2.9 1. 5 - 5.3 

2.0065 2 1.81590 2.99 1.53 - 5.4 

1.81312 3 1.80512 3.05 1 • 58 - 5.57 

1 . 59575 5 1. 79010 3.15 1.60 - 5.8 

1.34348 10 1. 76709 3.40 1 . 87 - 6.0 

11 
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3.5 I 

' SINGLE 'cwuos- TRANSFORMED oATA 

3.0 p' PROBABILITY 

PRIOR p' --- PEAKED GAMMA FCN 

2.5 - PRIOR<F>=05 _ 

POSTERIOR p' --

~2.0 -
POSTERIOR < F > = 2.8 

0.. 1.5 -

t.O-

0.5 i-

I 

0 10 1123456 
ZBF /3'-

7 8 9 

Figure 2a. PrioP and postePioP pPobability distPibutions of S', 
the seale paPameteP of gamma distPibution. The pPioP pPoba­
bility distPibution (dashed) was K1 = 12 and K2 is ohosen so 
that the expeoted value of pPioP S ooPPesponds to a seeding 
faotoP of 0.5 (Painfall Peduotion by a faotoP of 2). The 
postePioP pPobability distPibution of S' (solid) is deteP­
mined by insePting the seeding Painfall data in Bayes' 
equation. 
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3.5 I 

SINGLE 'cLou~s- ~RAN~FORM'cD DATA 
3.0 r p' PROBABILITY -

PRIOR p' --- PEAKED GAMMA FCN 

2.5 r- PRIOR <F> = I -
POSTERIOR p' --

~2.0 r- POSTERIOR <F> = 2.9 

a. 1.5 r -

t.O r-

o.5r /t-, 

.. I ', 
'" 

I ,_, 
' I I 

0 1 12 3 4 5 6 7 8 9 10 
2.9F 13'-

FiguPe 2b. Same as 2a, except that the expected vaZue of the 
S' corresponds to F = 1, i.e., seeding has no effect. 

3.5 

3.0 1-

2.5 1-

~2.0 

a. 1.5 r 

t.O 1-

0.5 1-

0 

I I 

SINGLE 
1

CLOU;S- TRANSFORM'cD D~TA 
p' PROBABILITY _ 

PRIOR p' --- PEAKED GAMMA FCN 
PRIOR <F> = 3 

POSTERIOR p' -­
POSTERIOR < F > = 3.05 

-

-
I!"-, 

I 1\ I 
. l I '-.., • I I I 

1 12 3 4 5 6 
3.05F 13'-

I 

7 8 9 10 

Figure 2c. Same as 2a, except that the expected vaZue of the 
prior S' corresponds to F = 3, i.e., seeding muZtipZies 
the rainfall by 3. 
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3.5 

3.0 r-

2.5 f-

~2.0 r-
~ 

a.. 1.5 f-

1.0 r-

0.5 

I I I I I I I 

SINGLE CLOUDS- TRANSFORMED 

p' PROBABILITY 

I 
DATA 

PRIOR p' --- FLAT GAMMA FCN 

PRIOR < F > = Q5 

POSTERIOR p' -­
POSTERIOR < F > = 3.07 

-----/'_., I I ---,_ __ -- I I 

-

-

-

-

0 1 J2 3 4 5 6 7 8 9 10 
3.0TF f;J'--

Figure 3a. Same as figure 2 except that K1 = 2~ giving a 
fZatter prior probabiZity distribution of S'. 

3.5 I I I 1

CLOUOS- TRANSFORMED SINGLE DATA 

3.0 - IJ' PROBABILITY -
PRIOR p' --- FLAT GAMMA FCN 

2.5 f- PRIOR <F> = I -
POSTERIOR p' --

~2.0-
POSTERIOR <F> = 3.08 -

~ 

a.. 1.5 - -

1.0 - -

0.5 - -
---~--~ -I/" I j ~--.,.__ ' ' 

0 1 J2 3 4 5 6 7 8 9 10 
3.08F f;J' 

Figure 3b. Same as figure 2 except that K1 = 2~ giving a 
fZatter prior probabiZity distribution of S'. 
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3.5 I I 
SI;GLE 

1

CLOUOS- ~RAN;FORMEO OATA 

3.0 f.. p' PROBABILITY -
PRIOR p' --- FLAT GAMMA FCN 

2.5 f.. PRIOR <F> = 3 -
POSTERIOR p' --

~2.0 f.. 
POSTERIOR <F> = 3.08 -

~ 

o.. L5 f.. -

1.0 f.. -

0.5 f.. -...--.... 
i/' I--,.__...._ I I ' ' 
0 12 3 4 5 6 7 8 9 10 

3.08F 13' 

Figure 3a. Same as figure 2 except that K1 = 2, giving a 
flatter prior probability distribution of S'. 
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Table 4. Transformed Single Cloud Data. 

KJ = 2 
Prior S'Flat Gamma Function Posterior S'Gaussian 

Prior<S'> F Post <S'> F F for 95% Prob. 

2.83769 0.5 1.81176 3.07 1 . 65 - 5.4 

2.38620 1.80950 3.08 1.65 - 5.65 

2.0065 2 1 . 80657 3.08 1 . 65 - 5.65 

1.81312 3 1 • 80468 3.08 1.65 - 5.65 

1.59575 5 1 . 80203 3.08 1 .65 - 5.65 

1. 34348 10 1. 79788 3. 10 1. 73 - 5.80 

As might be expected, when the priorS' distribution is more 

peaked (K 1 = 12) the posterior <S'>is fairly sensitive to the prior 

<S '>, but when the priorS' distribution is flatter, there is virtually 

no sensitivity to the prior scale parameter and the seeding factor is 

almost identical to that obtained from classical statistics. Al-

though the 95 percent probability permits a rather wide range in seeding 

factor, it is substantially positive at even the lowest limit. These 

results are further confirmed when we take the most diffuse prior 

distribution of 13', namely uniform. 

The most diffuse prior probabi 1 ity to place on s' is one 

which is uniform over a wide range. We start with Bayes. equation in 

form (4) where again the denominator is regarded as a normalizing con-

stant. We obtain: 

16 



p(l3'!D') ~ p(D'IB') p(B~ 
Denom. 

and 
n 

-13' X Rj 
i=l 

e 

p(B'JD) ~ 

n ri-1 
nR'. 
• I 
1~1 

De nom. 

a .::_ 13' .::_ b 

otherwise 

ri 
-s'E R'. 

i=l I 
e 

where the range a to b is the range defined for the uniform prior 

probability of 13'. 

Hence 
b n 

J 13,ncl 
-s'·X R'i 

i~1 
dB" 1 e 

-
K 

a 

To transform variables, let 

n 
~ s'.E R'. y I 

i=l 

and we find 

' [y(••'. n 1 
-~ 

1 
b E K n ) net + 1 ' 

X R'· i~1 
• I 
J=I 

where Y is the incomplete gamma function. 

''; )] n 
R'i) - y (net' + 1 , a E 

i=i 

n 
lt is noteworthy that E 

i=l 
is a sufficient statistic for the distribution. 

We want the moments of the posterior probability distribution 

17 
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ofS 1
• Firstly, 

n 
b -sl:: R

1
• 

<SIIDI'>= K f sinal+ 1 e i=l I 

a 

= 
,.---..!:K:_,..-,- /bl:R

1

i nd + 1 

(.~ R
1
;\ na +2 

1 

y e-y dy 

1=1 1 al:R; 

K 

=----~-

(
. ~ R1;)na + 2 

2, bl:R1
;) - y(na1 + 2, 

t=r 

multiplying (21) by K from (20) we get 

<S1DI>= 1 y(na1 + 2, bE~;) - y(na
1
+ 

( 

n ) y (na' + 1, bl:R;) - y (na1 + 
l: Rl· 

i=l I 

or for the mth moment of the distribution 

2, al:R 1
;) 

1, al:R';) 

( I I ) ( I I <S 1 miD 1 >= 1 y na+m+1, bl:R; - y na+m+1, al:R;) 

l: Rl· 
( 

n )m y(na1 + 1, bl:R1
;) - y(nd + 1, al:R1;) 

i=l [ 

(21) 

(22) 

(23) 

We have developed computer programs which compute the posterior expected 

values of S1 and its moments. They also compute and plot the posterior 

probability density distribution for S
1
, including the normalizing factor. 4 

This function is a truncated gamma distribution, as will be illustrated. 

Applying the analysis to the transformed single cloud data, we 

obtain the results shown in figure 4. In figure 4a, with the prior 

4 Available on request from EML. 
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3 

2 

I 

10 3.0 

SINGLE CLOUDS 
TRANSFORMED DATA 

P{/]~d} FOR UNIFORM PRIOR p'--­
F RANGE 0.5 TO JO 

POSTERIOR </]'> = I.BJ. 

1.0 

a. 

3 

2 

5.0 

< F > ::J.07 

3.0 

0.5 

SINGLE CLOUDS 
TRANSFORMED DATA 

P{/]td} FOR UNIFORM PRIOR /3'--­
F RANGE 0.8 TO 5 

POSTERIOR </3'> : J.B:J 
<F>:2.95 

2.0 2.5 
/3"-

--F 
3.0 1.2 1.0 0.8 

b. 

Figure 4. Probability distributions of S' when the prior probability 
distribution (dashed) is assumed to be unifo~. a. Prior 
probability of S' extends from values corresponding to F = 0.5 
to values corresponding to F = 10. b. Prior probability of S' 
extends from values corresponding to F = 0.8 to values corres­
ponding to F = 5. 0. 
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range of uniform S' corresponding to a seeding factor in the range 0.5 

to 10, we~see a very sharp peak in the posteriorS' probability dis-

tribution, corresponding to a posterior expected seeding factor of 3.07. 

Furthermore, there is virtually no probability that the seeding factor 

1 ies below 1.2 or above 8. Reducing the range of the uniform prior S' to 

an F in the range of 0.8 to 5 (fig. 4b) we find only a small reduction 

on the posterior expected F, and negligible proba~ility that F is less 

that 1.2. Figure 4c and 4d show the prior distribution of F correspond-

ing to the two cases of uniform prior on S' that we have treated. Note 

that neither one is a very favorable prior for F. 

The agreement of these results with our earlier ones, together 

with the somewhat greater information gained from the Bayesian approach, 

are encouraging. However, the question must be addressed as to whether 

using the fourth root transformation might have lost any information 

and/or introduced any bias. The results of the bias test are shown in 

table 5 and figure 5. 

Table 5. Bias Test on Fourth Root Transfor-mation. 

EML Sinqle Cloud Control Data 

X R T T" T"!T"(x=l.O) 

0.2 32.9'2 1.96177 14.81127 0.21084 
0.5 82.29 2.466797 37.02829 0.52710 
0.6 98.75 2.58183 44.43350 0.63252 
0.8 131.67 2.77436 59.24494 0.84336 
1.0 1 64. 59 2.89507 70.24837 1 
1 . 1 181.05 3.00427 81.46214 1.15963 
1.2 197-51 3.07034 88.86809 1.26505 
1.5 246.88 3.24649 111.08522 1 . 58132 
2.0 329. 18 3.48858 148.11353 2.10843 
2.5 411 .47 3.68872 185.14107 2.63562 
3.0 493.76 3.86075 222.17067 3.16264 
3.5 576.06 4.01243 259. 19694 3.68972 
4.0 658.35 4. 14864 296.22588 4.21684 
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The bias test consisted of multiplying every cloud rainfall by the 

factor x and then averaging the 26 cases, presented in the column headed 

R. Then the fourth root of each data bit times x was taken and the aver­

age of this set presented in the column under T. Then each entry in the 

T column was raised to the fourth power. The last column presents the 

ratio of each~ to the value of T4 when x = 1. This column tells us, 

for example, that if seeding increased the rainfall from each cloud by a 

factor of 3, and if we used transformed data to deduce the seeding factor 

(without a careful inverse transformation) we would deduce a seeding 

factor of 3.16 or a little over five percent too high. Figure 5 shows 

that with these data the transformation is very nearly linear in the 

important range of the data and only introduces a small positive bias. 

Nevertheless, it is desirable to work with raw data if and when possible 

and this is done next. 

4. USE OF THE METHOD WITH THE SINGLE CLOUD RAW DATA 

Figure 6 compares the histograms for the raw data with those 

for the transformed. With the high rainfall tails, it 

was not at first recognized that'the gamma distribution might also be 

applied to the raw data. Extensive meteorological literature has shown 

that when enough cases are available, the gamma distribution fits a large 

class of rainfall data (see Thorn 1947, 1951, 1957, 1958, 1968; Thorn and 

Vestal, 1968; Mooley and Crutcher, 1968; Mooley, 1972; Barger, Shaw and 

Dale, 1959 and the bibliographies in these publications). Hence we-

applied the pro~ram DAMAX to the raw single cloud data to obtain the 

parameters for the best fit gamma distributions and to compare the fits 
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with the x• calculations. Table 6 presents results for both raw and 

transformed data. 

Table 6. 

Fitting of Distribution Functions to EML Single Cloud Data 

Distribution 

1. Normal Family 
2. Log-Normal 
3. We I bu 11 
4. Gamma 
5. Rayleigh 
6. Inverse Gamma 
7. Inverse Rayleigh 

Part I 

Equation for p(R) 

A Exp ( BR-CR2
) 

ARB Exp[-C(logR)2] 
A RB Exp(-CRB+') 
A RB Exp(-CR) 
A R~ Exp(-CR2

) 

A R Exp ( -C/R) 
A RB Exp(-C/R2 ) 

Control Clouds - Transformed Data 

D.F. 
Dist. -Log(A) B c Rel. Prob. x• 

1 4.04157 2.02874 0.34878 0.06 6.6 
2 3.08051 5.15808 3.08644 0.26 2.3 
3 2.34166 1.80100 0.03433 0.09 6.6 
4 0. 49114 5.52299 2.22360 0.27 4.2 
5 2.31008 2.58780 0.18001 0. 17 4.9 
6 -11 .. 77235 -7.16194 15.37373 0. 12 2.5 
7 -4.22864 -4.21716 8.40302 0.03 6.0 

; 6 

s Here the X2 's have been obtained from the~ test (see Tribus, 1969, 

loc. cit., p. 101) to which the X2 test is an approximation. For the 

transformed data slight changes in x• compared to those published earlier 

(Simpson, 1972) are the result of some minor Improvements in the program. 
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TabLe 6 (aont'd). 

Part II 

Seeded Clouds - Transformed Data 
D.F. = 6 

Dist. -Log(A) B c Re 1 . P rob. x2 
1 4.86249 1 0 85362 0.2399~ 0 014 3.0 
2 5.34034 7.34813 3.25198 0.14 2.5 
3 3.34546 2.01700 0.01168 0 0 18 4.7 
4 2.47642 6.10433 1.83149 0.24 3.7 
5 3-59767 3.00345 0 0 11728 0.25 2.8 
6 -13.84609 -7.29359 20.93732 0.04 5.6 
7 -5.17873 -4.23249 14.98414 0.01 7.0 

Part Ill 

Control Clouds - Raw Data 
D. F. = 6 

Di st. -Log(A) B c Re 1. P rob. x2 
1 5.10345 -0.00608 0.00000 "-0. 11 0 7 
2 4.46680 0.53952 0.19290 0.66 2.3 
3 3-73104 -0.29900 0.03419 0.24 5.9 
4 3 0 64775 -0.43925 0.00341 0.09 3.0 
5 3-50278 -o. 58723 0.00000 0.01 4.6 
6 -0.19194 -1.46183 6.20480 "'0 8.7 
7 0.87148 -1.31624 3.71763 "'0 16.3 

Part IV 

Seeded C 1 ouds - Raw Data 
D.F. = 6 

Di st. -Log (A) B c Rel. Prob. x2 
1 6.09127 -0.00226 0.00000 0.03 5-9 
2 6.72663 1.08705 0.20325 0.30 2.5 
3 4.73566 -0.24500 0.01162 0 0 39 4.7 
4 4.52174 -0.36041 0.00145 0.24 6.0 
5 4.13570 -0.52839 o:ooooo 0.04 5.8 
6 -0 0 77388 -1.46878 20.24454 "-0 0 8 0 1 
7 0.35567 -1.33478 52.61697 "-0 0 28 .o 
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In the case of the gamma distributions, the method of maximum 

likelihood was also applied to obtain the parameters, with ·results identi­

cal to those presented in table 6. The methods of maximum likelihood and 

maximum entropy result in the same set of equations to solve when esti­

mating the parameters of the gamma distributions. The concepts of maximum 

entropy and maximum likelihood are, however, quite different, as explained 

in Tribus (loc.cit., 1969). The method of Thom's estimators (Shenton and 

Bowman, J970) gave identical results with the transformed data and para­

meters less than two percent higher than those of table 6 with the raw 

data, where the shape parameter is less than one. 

The x2 's for most cases for most functions are sufficiently low 

that the null hypotheiis cannot be rejected. The gamma distribution 

appears to fit the transformed data best and perhaps to be a relatively 

less good fit for the raw seeded data. However, the Monte Carlo experi­

ments in secti·on 6 will show that this conclusion is unwarranted. There 

we demonstrate that with a sample of this size, it is quite possible that 

the gamma distribution is the best or nearly perfect fit to the raw data, 6 

or anyway no existing evidence militates against our so using it. 

Leaving the important questions concerning the determination of 

distribution functions from small samples to the final section, we pro­

ceed next to evaluate the seeding effect from the raw rainfall data. 

To apply the same analysis used with the transformed data, with 

the scale parameter 8 a measure of the seeding effect, it is necessary to 

o We recognize, of course, that if either the raw or the transformed 

data were perfectly fitted by a gamma distribution, then the other set 

could be fitted only approximately by that same distribution function. 
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assume that ~. the shape parameter, does not vary between seeded and 

control populations. With this sample~ varies by a little over one 

percent between seeded and control populations, whileS varies by a fac-

tor of 2.35. We therefore assume that ~ = 0.6 for both populations. A 

careful analysis of the consequences of this assumption showed no detect-

able change in probability for rainfall amounts exceeding ten acre-ft. 

For rainfall amounts less than ten acre-ft the probability curves for 

seeded and unseeded rainfalls are brought slightly closer together by the 

assumption that~ is the same for both; hence this assumption will, if 

anything, cause us to underestimate the seeding effect. 

We next construct the table relating• F and B, assuming that R 

for F l is 164.5885 acre-ft, the sample average. Results are presented 

in table 7. 

Table 7. Relation Between Seeding Factor F and S, the Gamma 
Distribution's Scale Parameter. 

F 

0.25 
0.5 
0.8 
1 
1 .5 
2 
3 
4 
5 
6 
7 
8 

10 

Single Cloud Raw Data 
~ = 0.6 

s 
.01456 
.00728 
.00458 
.00364 
.00243 
.00182 
.00121 
.00091 
.00072 
.00060 
.00052 
.00040 
.00036 

Table 7 is illustrated graphically in figure 7. There is now 

a simple inverse relationship between Sand F. 

As before, we first estimate the seeding factor with the priorS 
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a gamma distribution. When n is large, the limiting value of Sis 

.001866, corresponding to an F of 1.96, which is somewhat less than 

three. Tables 8 and 9 show results corresponding to tables 3 and 4. 

Table 8. Raw Single Cloud Data. 

Prior S Peaked Gamma Function Posterior S Gaussian 
Kl = 12 

Prior <S> F Post <S> F F for 95% Probability 
.0072? 0.5 .002100 1 .80 1. 34 - 2.8 
.00364 1 .001866 1.96 1 . 52 - 3.2 
.00182 2 .001562 2.35 1.8 - 3-9 
.00121 3 .001289 2.85 2.08 - 4.6 
.00072 5 .0009802 3.83 2.7 - 5.78 

Table 9. Raw Single Cloud Data. 

Prior S Flat Gamma Function Posterior S Gaussian 
Kl = 2 

Prior <S> F Post <13> F F for 95% Probability 
. 00728 0.5 .00150 2.4 1. 72 - 4.7 
.00364 1 .00146 2.5 1 . 75 - 4.9 
.00182 2 .00140 2.6 ]. 83 - 4.95 
.00121 3 .001339 2.7 1 . 85 - 5. 1 
.00072 5 .001233 2.9 2.0 - 5.5 

As with the transformed data, the flat priorS gives results less 

sensitive to the prior than does the more peaked curve. Both sets of 

results, however, give lower seeding factors which are more sensitive 

to choice of the prior expected value of S. The range for 95 percent 

is somewhat reduced, however, particularly for the more peaked prior dis-

tribution. Figures 8 and 9 illustrate these results. From them, together 

with figure 7, it is clear that the unfavorable prior distribution is 

, responsible for the lower seeding factor in these cases compared to nearly 
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all the other methods of its assessment. 

We then proceed next to the improved approach, namely a uniform 

distribution of B over a very wide range of seeding factors. Results 

are shown in figure 10. With the F range 0.5 to 10 (fig. lOa) we get a 

very sharp peak in the posterior probability distribution for S, corre­

sponding to an F of 2.5. There is negligible probability that F is 

less than 1.39. Restricting the prior B range to F from 0.8 to 5 

(fig. lOb) does not change the peak value of posterior F. With this 

prior there is negligible probability that F is less than 1.5. Figures 

JOe and lOd show the prior probability distributions ofF corresponding 

to the chosen uniform prio~of B. These are even more unfavorable than 

those for the corresponding cases with the transformed data (cf. figs. 

4c and 4d). Clearly, the slight reduction on posterior seeding factor 

that we obtain with the raw data is mainly a result of the less favorable 

priors, although the data transformation and the assumption of a~ 0.6 

for both seeded and control populations may have contributed slightly. 

Despites these differences, the data so strongly dominate the posterior 

distribution ofF that it comes out with remarkable consistency in all 

cases considered so far. 

5. ANALYSIS DIRECTLY IN TERMS OF SEEDING FACTOR 

5.1 Seeding Factor with Raw Rainfall Data 

The optimal approach to seeding factor evaluation is to treat the 

probability distributions of the seeding factor itself. This method, 

of course, involves setting the prior probability distribution on seed­

ing factor, for which most people would have a greater intuitive prefer­

ence than for using its reciprocal or a function of its reciprocal; most 

important, this procedure permits a diffuse prior probability on the 
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seeding factor itself, namely uniform over a wide range. 

Therefore, in this treatment ·we will eliminateS altogether from 

the rainfall probability density distribution and write instead 

p (R) (24) 

where R is now rainfall in acre-ft; <R> NS is the sample average or ex-

pected value of the unseeded distribution. F is the seeding factor, 

defined just as before, namely 

and 

<R> = <R>Ns F 

V2(R) = ' 
a 

Again, we will begin with a prior probability assignment to F 

(25) 

(26) 

which permits an analytic solution, namely an inverse gamma function as 

follows: 

p (F) 
(Kz)K,+J 
r(K1+1) 

-K -2 -K /F F I e 2 (27) 

The first two moments of the inverse gamma distribution are 

and 

<F> = .& 
K, 

v2 (F) 

(28) 

To find the posterior probability distribution for seeding effect 

F, we apply Bayes equation and proceed as follows: 
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p(FJD) C p(F) p(DJ F) 

(29) 

[-
n 

':] et l: 
-K-2 -K/F -net i=l = C F 1 e 2 F exp 

<R>Ns 

"~[- t (•, 
et 

; ')] -net-K - 2 1=1 = C F 1 + 
(30) <R> 

NS 

where with the single clouds <R>Ns = 164.588 acre-ft, the average 

of the 1968-1970 sample. This time we find the normalizing constant C by 
setting up the integration and transforming toy= 1/F. The resulting 

integral is recognized as that of a gamma, so that the constant is 

known to be 

and 

c = 
etl:R ·1 K + ---

2 <R>Ns 

net + K1 + 1 

r net + K1 + 1 

Now 

n 

< FJ D> = 

l: Ri 
i=1 K2 + _..:_..:__ 
<R>NS 

( 31 ) 

(32) 

It is noteworthy and logical that when n = 0 (i.e. there are no 

data) that in (31) <FJD> reduces to K2/K 1 • When n becomes very large, 

the expected va 1 ue of the seeding factor approaches R5/RNS as its coef­

ficient of variation shrinks. 
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We now consider seeding factor probabilities using the single cloud 

raw data, (30) - (32) an'd combinations of K1 and K2 as 1 isted in table 10; 

note that K1 must exceed zero for finite prior expectation and that it 

must exceed one for finite prior variance. 

Table 10. Seeding FactoP - Raw Data - PrioP InvePse Gamma Function. 
Values of K1, K2 ; PPiOP Expectations and StandaPd Deviations. 

Prior Prior 
Case No. ~ ~ F cr 

1 2.25 6.75 3 2.68 
2 1 3 3 "" 
3 1 1 1 "" 
4 1 0.5 0.5 "" 
5 10 20 2 0.667 
6 10 5 0.5 0. 16 7 
7 0.5 0.5 1 not defined 

Table 11 gives the seeding factor expectation, standard deviation 

and+ 2cr range after seeing the seeded single cloud data. As illustrated 

by the near symmetry of the solid curves of probability density for 

seeding factor, the~ 2cr range is a fair approximation to the integrated 

95 percent probability range. 

Table 11. Seeding FactoP -Raw Data - PostePioP PPobabilities 
With PrioP InvePse Gamma Function. 

Case No. <F> cr + 21J range 

1 2.72 0.64 1. 37 - 3-93 
2 2.70 0.66 1.34 - 4.01 
3 2.58 0.63 ]. 31 - 3-85 
4 2.55 0.6 3 1 • 30 - 3.80 
5 2.42 0.48 1. 46 - 3-37 
6 ]. 83 0.36 1.11 - 2.55 
7 2.63 0.66 1.32 - 3-94 

The seven cases are illustrated graphically in figures 11 and 12. 

Cases 4 and 6 show what happens even with a prior prejudice against the 
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seeding which is so extreme that virtually no probability favoring even 

a positive effect is permitted (fig. 12a and particularly fig. 12c). 

Even with this prejudice, the data overcome it and all but two of the 

posterior probabilities exceed 2.5. With an extremely small exception 

in case 5, negligible posterior probability of a negative seeding effect 

remains after taking the data the data into account. However, it is 

still better to take a more diffuse prior probability distribution for 

the seeding factor. 

The final effort for the raw data is to take a uniform prior 

probability, namely 

p (F) = -
1
- for a < F < b b-a 

so that the posterior probability density distribution for seeding 

factor F is 

p(F[D) = C1 p(D[F) for a< F < b 

= 0 elsewhere 

= 0 elsewhere 

(33) 

(34) 

The normalizing constant C1 may either be found by adapting the 

computer program described, setting the integral from a to b equal to 

one, or analytically as follows: 
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n 
a L: Ri 

i=1 To s. imp 1 i fy, 1 et )l = -,;:--:::-­
<RNs> 

then 

c1 = )lna- 1~y(na-1,)l/a) - y(na-1,)1/b)] 

(35) 

(36) 

= )12 y(na-3,)1/a) -y(na-3, )l/b) 
y(na-1 ,)l/a) -y(na-1, )l/b) 

Here y is the incomplete gamma function as before. 7 

Two ranges of uniform prior probability on seeding factor were 

considered, namely a reasonable range from F = 0.8 to 5 and an extreme 

range from F = 0.5 to 10. Results are shown in table 12 and figure 13a and b. 

7 

TabZe 12. SingZe CZouds - Raw Data. Uniform Prior ProbabiZity 
on Seeding Faator. 

Case 1 - Reasonable Range 
0.8 - 5 

After data: 
<F!D> = 2.99 

cr{FID) = 0.72 

Case 2 - Extreme Range 
0.5 - 10 

After data: 
<F I D> = 3.08 

cr(FIDl = o.87 

When using the normalized incomplete gamma function it is necessary to 

multiply <F> by 1/(na-z) and <F 2 > by 1/[(na-z) (na-3)]. 
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Again, the most likely seeding factor from the data is about three. 

There is p ract i ca 11 y .!:!£_ p robab i 1 i ty that the seeding factor is 1 ess than 

one, or namely a negative effect. There is a small, but finite probability, 

that it exceeds five. Figures 13 band 13c show the prior probability 

distributionsof the gamma scale parameter B implied by the uniform prior 

probability ofF in figures 13a and 13b. It is important to note that a 

diffuse prior on seeding factor is anything but diffuse forB and vice-

versa. It would, therefore, seem preferable in the future to assign 

priors to F, wherever possible, rather than to functions ofF for which 

there is less physical meaning. 

5.2 Seeding Factor with the'Transformed Rainfall Data 

It appears desirable ·also to conduct a direct seeding factor 

analysis with the transformed data, since the distribution of these are 

nicer looking gamma functions with larger shape parameters. These more 

normal distributions might possess advantages for some types of investi-

gat ion. 

Here ~1e define a transformed seeding factor F1 

<RI> 
Fl = seeded ~ FQ.25 

<R 1 > contro 1 (37) 

for use with the transformed data. (See section 3 for a discussion of 

the above approximation.) we· consider only uniform prior probability 

on F1
• Analogously with (24), '(33) and (34) we proceed as follows: 

p(FI) = 1 for a 1 < F 1 < b 1 

b'-a 1 

so that the posterior probability density distribution for F1 is 
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p(F'JD') = C' p(D'JF') for a' < F' < b' 

0 e 1 sewhere 

n 

exp 

a'l: R'. 
• I 
1=1 for a' < F' < b' = C, F, ( -na~ 

<R'>Ns F' 

= 0 elsewhere (39) 

where R' now stands for trans formed or fourth root data and a' is seven. 

We consider the two cases where F' is uniform in two ranges: first 

corresponding to F from 0.5 to 10 and second to F from 0.8 to 5, as 

previous 1 y. 
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and 

The inverse transformations are 

p (F) 
1 -0. 7 5 

~ ..--4 (r.-b "--_a') F 

p(FJD) 
- (naH) c I 

= 4 F 4 exp 
[ 

n l -a l: R 1 
• 

j-1 I 

(40) 

(41) 

The prior expectation for F is readily obtained by integration, 

while the posterior expectation can readily be shown (by transformation 

of the appropriate integral) to be 

<FJD 1> ~ <F 1 "Jo 1> 

-(a'i~1 R' i)" y(na'-s,]J/a) - y(nci-s ]J/b) 
- < R ' > N s -:':y7("='n"irir-.:.1 .!.!' ]J"'/T-a'-')'-----Ly-7( :..:n a;,_,-1"-,..!ll:!./,;=.b ) ( 42) 

or the fourth moment of the F' distribution. 8 

The results of this approach are illustrated graphically in figure 

14. The slightly higher values of posterior expected seeding factors 

here than previously are attributed in part to the positive effect of the 

transform (fig. 5 and table 5) and in part to the difference influence of 

the prior probability. 

8 When normalized incomplete gamma functions are used in (42), the result 

must be multiplied by 1/[na'-2) (na'-3) (na'-•) (na 1 -s). 
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6. ON THE NUMBER OF OBSERVATIONS REQUIRED 

An irremovable obstacle in most weather modification experiments 

is the small size of the data sample. In the 1968 EML single cloud ex­

periment, 19 GO cases (14 seeded and five control) were not enough to 

separate the seeded and control populations to the five percent level 

by classical statistics, while increasing the sample to 52 GO cases 

in 1970 accomplished this goal. In approaching any experiment, we must 

inquire how many cases will be necessary to resolve various postulated 

magnitudes of seeding effect to specified degrees of significance and/or 

accuracy. 

The demonstration that the rainfall observations are well fitted 

by gamma distributions provides a strong tool to attack this important 

problem. It is not difficult to generate on a computer any number of 

randomly chosen "rainfall" observations from any gamma distribution. 

This is cheaper than an observational program and much cheaper and 

less complicated than any actual modification program. We may then use 

simulated rainfall observations to address questions like the following: 

1) How many observations are required to obtain the sample 

average of a rainfall population· to a specified accuracy? 

2) How many cases are needed to determine the shape and scale 

parameters of the distribution adequately? What is an ade­

quate determination of these parameters for the particular 

experiments we are conducting? 

3) What are the relative advantages and disadvantages in working 

with the raw or transformed data regarding the sampling 
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problem and distribution stability? 

4) What are the magnitudes of errors in seeding factor that can 

arise from the data sampling problem and how many cases are 

required to ensure these do not exceed a specified level 

of acceptability? 

Some aspects of these questions are answered in this section for 

the single cloud case, and a framework is established for their further 

pursuit, particularly in the area experiment. 

The computer program used here, together with DAMAX, is 

called RAIN (listed in Appendix 1). In the first part, it calculates in­

tegrated probability as function of SR, for any gamma function, given a. 

In the second part, it generates random numbers from 0 to 1 and interpol­

ates in the integrated probability table, printing out R when S is given. 

The simplest illustration involves sample averages. We take 

gamma distributions corresponding to the control rainfall populations, 

raw and transformed. Then we consider m samples of n observations, in 

order to assess our chances of determining the expected value <R> of 

the "real" gamma distribution within specified limits from a set of n 

observations. In preparing table 13, we started with m = 100. With 

parameters corresponding to the raw data, results were clearly not re­

producible from one batch of 100 sample averages to the next. In order 

to obtain reproducible results, m was increased until this goal was 

achieved, namely tom= 1000. Appendix 11 shows from probability theory. 

that results nearly identical to those of table 13 are obtained with the 
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sample sizes given. 

Table 13. Percent Probability That The Sample Mean of n Cases 
Lies Within Specified Limits of <R> - from Numerical Experiments. 

A. Raw Data (m = 1000) 

n <5% <10% <20% >30% <1/2 >2 

5 6.0 12.4 25.0 61.9 20.1 6.0 
10 9.8 19. 5 37.7 45.9 7.1 2.1 
20 13.9 28.6 51.2 28.1 1. 8 0 
50 20.5 39. 1 72.3 7.4 0 0 

B. Transformed (m = 1000) 

n <5% <10% <20% >30% 

5 21.3 45.0 78. 1 5.6 
10 33. 1 55.2 90.2 1.0 
20 43.6 76.6 98.5 0 
50 68.0 94.0 100 0 

With the raw data, note that doubling the sample size leads to roughly 

a 50 percent increase in the percentage of cases falling within the 5, 

10 and 20 percent categories. With a sample of ten cases, there is still 

a ser.ious possibi 1 ity of getting a sample average in error by a factor of 

two, which virtually disappears when we obtain 20 cases. 

In considering the transformed data; there is little, if any, indica-

tion of reproducibility occurring sooner than with the raw data. With 

the transformed data, it should be recalled that 5 percent error corre-

spends to roughly 20 percent error in the raw data and hence from this 

viewpoint there appears to be no advantage in working with transformed 

data. 

An important further test with this program is to simulate a 
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"seeding" experiment analogous to the manner of Huff (1971) in which one­

half of the randomly generated sample averages from the same population 9 

are arbitrarily called "seeded." The ratio of each term in two matrices 

containing 100 "seeded" and 100 "control" samples was taken and results 

are shown in table 14. This table presents the frequency of various 

ratios of the "seeded" sample average to the "control" sample average. 

This kind of spurious result could arise from an attempted modification 

experiment where the treatment had no effect. 

Table 14. Simulated "Seeding" Experiment - 100 Samples of n Cases 
each. "Seeded 11 to "Contra l" Ratio. 

Frequency Distribution of RatiOS 

n= 5 10 20 . 50 
min. .058 0.26 0.24 .56 

< 0. 50 17 7 8 0 
o.5T - 0.80 24 27 19 21 
0.81 - 1.20 22 23 40 53 
1. 21 - 1. 50 7 15 16 21 
1. 51 - 2.0 7 11 12 5 
2.01 - 2.50 10 4 3 0 
2.51 - 3.0 0 10 2 0 

> 3.01 13 3 0 0 
max. 10.70 4.06 2. 71 1. 81 

Table 14 suggests extreme caution in drawing inferences from seeding 

experiments with small samples of data. It also suggests that to specify 

natural distributions adequately for resolution of seeding effects of a 

factor of two to three, 20 to 50 cases are a necessary minimum. If we come 

down to dealing with expected seeding factors of 50 percent or less, it is 

plain that 50 cases are not adequate, with this type of data distribution. 

The final important question here is the degree of accuracy 

9 That is, all cases are taken from the same "real" gamma distribution. 
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with which the gamma function parameters can be recaptured as a funcHon 

of n, the number of observations. Here we consider two gamma functions, 

with shape and scale parameters chosen to correspond to the control 

single cloud data, raw and transformed, respectively. We select n observ­

ations at random from these distributions, pretend the set is a set of 

rainfall data for n clouds and apply DAMAX. We repeat this procedure m 

times for each value of n and then examine the statistics of the recovered 

parameters and their departures from the "real" parameters. In tables 

15 and 16 to follow we taken= 20, 50 and 100 successively; the reason 

for the choice is that these are the numbers of control cases we might 

expect to obtain in single or multiple cumul~s experiments in two to ten 

years of work. 

Here we take m = 100 (100 sets of five, 20 and 50 cases). 10 Expert 

opinions consulted suggest that m = 100 may be marginal for reproducibility, 

but in analyzing the latter we are aided by the extensive valuable work 

of Bowman and Shenton (1968; 1970) on the gamma distribution. They derived 

asymptotic expansions of the expectations, presenting tables of bias, 

standard deviations, etc. of the parameters as a function of the parameters 

and of sample size. They also conducted Monte Carlo experiments with up 

to lOs cases each. 

Table 15 presents results for the gamma function corresponding to· 

raw single cloud data, while table 16 corresponds to the transformed single 

cloud data. 

1 0 The limit to the sample at this point is imposed by the cost of 

computer time. 
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TdbZe 15. Application of DAMAX to "Data" Generated by Random 
Selection from Specified Gamma FUnctions. 

Gamma function corresponding to raw control data 
a= 0.6 s = 0.00364 <R> = 164.5885 acre-ft 

A. n = 20 
a S X 102 Prob. Gamma R (acre-ft) 

Max. value 1 . 1092 1 . 1 870 0.4888 327.1277 
Min. value 0. 3844 0. 1730 0.0441 73-9079 
Mean 0.6677 0.4769 0.2689 154.4864 
Variance 0.0275 0.0392 0.0058 2384.9482 
Std. dev. 0. 1658 0. 1979 0.0762 48.8359 

B. n = 50 

Max. value 0.9947 0.6910 0.6408 265.3409 
Min. value 0.3959 0.2120 o. 1034 91.8385 
Mean 0.6137 0. 3779 0.3679 168.6239 
Variance 0.0124 0.0116 0.0121 880. 1806 
Std. Dev. 0.1115 0.1075 0. 11 02 29.6678 

c. n = 100 

Max. value 0.8516 0.5620 0.8166 218.2472 
Min. value 0.4659 0.2500 0.0762 118.1907 
Mean 0.6026 0. 3672 0.4596 167.2139 
Variance 0.0055 Q.0052 0.0334 498.9574 
Std. Dev. 0.0743 0.0722 0. 1827 22.3374 
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TabZe 16. Application of DAMAX to "Data" Generated by Random 
Selection from Specified Gamma Functions. 

Gamma function corresponding to transformed control data 
C!. = 7.0 B = 2.22360 <R> = 2.93353 ( f)0.25 acre- t 

A. n = 20 
C!. B Prob. Gamma R (acre-ft) 0 ' 25 

Max. value 29.6933 9.9008 0.2449 3.4520 
Min. value 2.7792 1. 01 32 0.0133 2.2276 
Mean 8.1524 2.8038 0.1684 2.9308 
Variance 12.3459 1 . 5181 0.0024 0.0468 
Std. dev. 3.5137 1 . 2321 0.0492 0.2164 

B. n = 50 

Max. value 12.3816 4. 1242 0.5065 4. 1160 
Min. value 4.4934 1 . 4470 0.0306 2.4727 
Mean 7.2542 2.4750 0.2596 2. 9503 
Variance 2.3753 0.2552 0.0122 0.0459 
Std. dev. 1. 5412 0.5052 0.1103 0.2143 

c. n = 100 

Max. value 10.6011 3.5235 0.7152 3.2217 
Min. value 5.2579 1 . 7100 0.0072 2.6773 
Mean 7.3754 2. 5223 0.3972 2. 9302 
Varia nee 1 . 1397 0. 1492 0.0298 0 .0113 
Std. dev. 1 . 06 76 0.3863 0. 1726 0. 1064 

It is noteworthy that, despite the fact that all observation sets 

were selected from "real" gamma distributions, the gamma distribution did 

not always come out the most probable, with the maximum entropy criterion. 

Its rank is tabulated in table 17. 

TabZe 17. Rank of Gamma Distribution. 

n/ rank 

20 

50 

100 

A. Raw Data 
1 2 3 4 5 

14 65 

41 54 

58 42 

14 5 2 

5 0 0 

0 0 0 
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B. Transformed Data 
1 2 3 4 5 

17 17 18 48 0 

34 30 12 24 0 

54 26 14 5 0 



Next we examine the bias of the mean and the variance that we 

might expect from a much larger number of calculations. Table 18 is 

reproduced from the figures of Bowman and Shenton (1970). 

A. 

B. 

Table 18. {AfteP Bowman and Shenton, 1970). FTopePties of 
RecaptUPed Gamma PaPametePs as Function of Sample Size. 

Mean Bias Fractional Variance 
a 1/S a 1/S 

a = 0.6 (corresponding to raw single cloud data) 
n 

20 0.1311 -0.0425 0 0 1204 0 0 1503 

50 0.0477 -0.0169 0.0344 0.0610 

100 0.0231 -0.0084 0.0155 0.0306 

a 7 (corresponding to transformed single cloud data) 

n 
20 0 0 1710 -0.0499 0 0 1757 0.0977 

50 0.0619 -0.0200 0.0480 0.0403 

100 0.0300 -0.0100 0.0213 0.0203 

Our small samples in tables 15 and 16 were extensively compared 

with the results in table 18. There is fair agreement in bias, improving 

as n increases, and excellent agreement in variance. In no cases was our 

bias significantly or systematically larger than the above. These results 

increase our confidence in our RAIN program and random number generator, 

which was subjected to numerous independent tests. In all but the vari-

ance of the scale parameter, the advantage is with the smaller shape 

parameter; hence table 18 provides no reason for preference to work with 
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transformed rather than raw data. 

It appears from tables 15- 18 that essential improvement in para­

meter recovery is secured by progressing from 20 to 50 cases, but less 

is gained in doubling that sample from 50 to 100. However, further 

consideration of the variances and standard deviations presented versus 

anticipated seeding factors presses the argument for 100 cases. 

If a seeding factor is two or more, it is likely that about 50 

pairs of cases can resolve it adequately. If we deal with seeding factors 

of much less than 2, then we must attempt to obtain roughly 100 cases. 

Furthermore, with seeding factors less than about 2, radar calibration 

erro~and/or gaging problems, not considered in this paper, become a 

serious consideration. 

7. CONCLUDING REMARKS 

The Bayesian approach applied to the single cumulus experiments 

confirms a seeding factor of about 3 on the rainfall. This result can 

be shown relatively independent of widely differing prior probability 

assumptions. 

The approach leads to valuable numerical experiments on the number 

of cases needed to resolve various sizes ·of seeding effects. The entire 

framework will next be applied to the multiple r "lus experiments of 

1970, 1971 and 1972. 
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APPENDIX I 

LISTING OF PROGRAM RAIN 

DIMENSION P(100) ,R(1000) ,RV(1000) 
DIMENSION PAK(6) ,BUFF(14) ,ELTNM(2) 
INTEGER DATE(2) 
ABNORMAL USRRND 
DATA PAK/ 1 RANDOM 1 

,
1 RAWDAT 1 

,
1 

200 READ (5,16) E1 ,N1 ,A,Q,B,N,M 
16 FORMAT (A6,16,2F5.1 ,F8.5,214) 

IF (N.EQ.O) CALL EXIT 
DO 300 KL=1, 100 
N1=N1+1 
ENCODE (12, 15,ELTNM, IX)E1 ,N1 

15 FORMAT (A6,J6) 
PAK(3)=ELTNM(1) 
PAK(4)=ELTNM(2) 
RVSUM=O. 
CALL ERTRAN (9,DATE(l) ,DATE(2)) 
DECODE (12,10,DATE,IX) IA,IB 

10 FORMAT (216) 
IP=(IA+IB)/615+18 
S=USRRND (I P) 
DO 20 1=1 ,50 
Y=A*I/50 
P(I)=FNI (A,Y) 

20 CONTINUE 
DO 25 1=51, 100 
Y=A+ (Q-A) ;, ( 1-50) /50 
P (I) =FN I (A, Y) 

25 CONTINUE 
DO 60 K= 1 ,M 
RSUM=O. 
DO 50 J=1 ,N 
S=USRRND(O) 
DO 30 1=1, 100 
I F ( S. LT. P (I ) ) GO TO 35 

30 CONTINUE 
35 IF (I .GT.50) GO TO 40 

IF JI.EQ.1) GO TO 45 

I I I I , 

R ( J) =A* ( 1-1 ) I 50+ (A/ 50)'' ( S- P ( I - 1 ) ) I ( P ( I ) - P ( I -1 ) ) ) 
XO=A''( 1-1 )/50 
X1=Ai<l /50 
PXO=P(I-1) 
PX1=P(I) 
GO TO 48 

40 RR=A+(Q-A)i<(l-51)/50 
R(J)=(RR+((Q-A)/50)*(S-P(I-1))/(P(I)-P(I-1))) 
XO=A+( (Q-A),;( 1-51 )/50) 
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LISTING OF PROGRAM RAIN (Continued) 

X1=XO+((Q-A)/50) 
PXO=P ( 1-1) 
PX1=P(I) 
GO TO 48 

45 R(J)=A/50*5/P(I) 
XO=O.O 
X1=A/50 
PXO=O.O 
PX1+P(I) 

48 X=R(J) 
99 PX=FNI (A,X) 

IF ((ABS(PX-S)) .LE.1E-4)GO TO 101 
IF (PX-S) 100,101,102 

100 XO=X 
PXO=PX 
X=XO+((S-PXO)/(PX1-PXO))*(X1-XO) 
GO TO 99 

102 X1=X 
PX1=PX 
X=XO+((S-PXO)/(PX1-PXO))/(XI-XO) 
GO TO 99 

101 R(J)=X/B 
RSUM=RSUM+R(J) 

50 CONTINUE 
RV (K)=RSUM/N 
RVSUM=RVSUM+RV(K) 

60 CONTINUE 
AVE=RVSUM/M 
WRITE (6,55) (RV(K) ,K=1 ,M) 

55 FORMAT (1H,8F10.5) 
WRITE (6,65) AVE 

65 FORMAT (1H, 'AVERAGE=' ,Fl0.5) 
CALL USRSDO(PAK) 
ENCODE (80,78,BUFF,ITRN) M 
CALL USRSDW(BUFF) 
DO 75 IV=1 ,M,8 
IK=IV+7 
ENCODE (80,77,BUFF,ITRN) (RV(L),L=IV,IK) 

77 FORMAT (8Fi0.5) 
78 FORMAT (II 0) 
75 CALL USRSDW(BUFF) 

CALL USRSDC 
300 CONTINUE 

GO TO 200 
END 
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LISTING OF PROGRAM RAIN (Continued) 

PUNCTION FNI(X,Y) 
IF (Y.LT.(X/2+4)) GO TO 120 
G7=1. 
G8=1. 
L=IDINT(X) 
DO 100 1=1 ,L 
G7=G7'' (X-I) /Y 
IF (G7.LT. 1E-4) GO TO 110 
G8=G8+G7 

100 CONTINUE 
110 FNI=1.-G81<EXP((X-1.),<LOG(Y)-Y-FNG(X)) 

GO TO 150 
120G8=1./X 

G7=G8 
DO 130 J=1 ,50 
G7=G71<Y I (X+J) 
IF ((G7''X) .LT.1E-4) GO TO 14b 
G8=G8+G7 

130 CONTINUE 
140 FN I =G8*EXP (X,< LOG (Y) -Y- FNG (X)) 
150 RETURN 

END 

FUNCTION FNG(R) 
IF (R.LT.4.) GO TO 3260 
G=R'' (DLOG (R) -1 . )+0. 5''DLOG (6. 2831853/R) 
FNG=G+(1-1/(30*R*R))/(12*R) 
GO TO 3350 

3260 G1=R-IDINT(R) 
LG2=1DINT(R)-1 

3280 G = 1.-(.57710166-(.98585399-(.87642182-(.8328212-(.5684729 
* -(.25482049-.0514993*G1)*G1)*rr1)*G1)*G1)*G1)*G1. 

IF (LG2) 3310,3340, 3320 
3310 G = G/R 

GO TO 3340 
3320 CONTINUE 

DO 3330 LG9=1 ,LG2 
G=G1< ( G 1 +LG9) 

3330 CONTINUE 
3340 FNG=DLOG(G) 
3350 RETURN 

END 
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APPENDIX I I 

- A 
DISTRIBUTIONS AND PROPERTIES OF R AND F 

by Anthony Olsen 

In section 6 consideration was given to the number of observations 

required to accomplish specific goals. The methodology used consisted 

of assuming that the rainfall observations arose from a gamma distribution 

with known parameters. This assumption is supported in the earlier 

sections. Utilizing the gamma distribution, rainfall data were simulated 

and Monte Carlo procedures were used to answer questions concerning 

sample size, seeding factor and other variables. The purpose of this 

appendix is to give an alternate approach for answering some of the 

questions. Specifically, the number of observations required to obtain 

the sample average of a rainfall population to a specified accuracy and 

the natural variabilities of the sample seeding factor is a function of 

the sample size and true seeding factor. 

The basic idea of the method utilized is as follows. It is 

assumed that the rainfall observations are observed values of a random 

variable that has a gamma distribution. From this distributional 

assumption, the sample distributions of the sample mean R and the 
A 

sample seeding factor Fare derived. It is then a simple matter to 

construct the appropriate probability statements in answer to questions 

of natural variability. The difference between the present approach and 

that of section 6 is the manner in which the sample distributions are 

obtained. Thi latter uses a simulation approach. Each is equally valid. 

Let R1 , R2 , ••• , Rn be random samples from a gamma distribution 
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with parameter cr and B. By the reproductive property of the gamma 

distribution it follows that the sample mean 

R 

has a gamma distribution with parameters ncr and nB. Moreover, the expected 

value of R is cr/8, the same as the original population. 

The question of interest is: what is the percent probability that 

the sample mean of n observations lies within the specified limits of 

<R>? In terms of a probability statement 

Pr[JR- <R>J < b <R>] 

gives the probability that R is within lOOb percent of <R>. Statements 

of the above form only require the use of incomplete gamma tables to 

determine the probability, since R has a gamma distribution. Note that 

the distribution changes parameters as n changes. 

Table 1 corresponds to table 13 given in section 6 with the prob-

abilities calculated using table 7 in Biometrika Tables for Statisticians 

by E. S. Pearson and H. 0. Hartley (1966), the normal approximation to 

the gamma distribution given by (26.4. 14). Abramowitz and Segun (1964) 

was utilized for values outside the range of the table. 

In comparing the simulated probabilities with the probabilities 

given here, two items are of interest. First, note the close agreement 

between the tables. Second, note that table 13 gives an approximation 

to the actual percent probabilities presented in table I. 
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Table Vl presents the same situation as table V with the exception 

of the change in a. The effect of a is readily seen to be an apparent 

increase in sample when a is increased. This is as expected theoretic-
~ 

ally. The sampling distribution ofF depends on a only in the form ma 

or na. Hence, an increase of a increases the product. Furthermore, in 

calculating probability statements v 1 = 2na and v2 = 2ma enter as the 

degrees of freedom associated with Snedecor's F-distribution. 

In the actual application of the distribution of sample seeding 

factor, the value of a is not known, but is estimated from both the 

seeded and control rainfall. If a is overestimated, the effect is that 

the probability statements made will be overly optimistic. For example, 

using tables V and Vl we obtain 

Pr[1.5 < F.::_ 2.5, ~ :.~]= .23539 

Pr[1.5 .::_F.::_ 2.5, ~: ~]= .30548. 

The change in a from 0.6 to 1.0 has the effect of increasing the degrees 

of freedom associated with Snedecor's F-distribution from v 1 = v 2 = 6 

to V 1 = v 2 = 10 for m = n = 5. Therefore, in the interpretation of the 

probabilities statements some care must be exercised. 

REFERENCES 

Abramowitz, M. and I.A. Segun (Editors) (1964), Handbook of 
Mathematical Functions, National Bureau of Standards, 1046 pp. 

Pearson, E.S. and H.O. Hartley (E,!itors) (1966), Biometrika Tables 
for Statisticians, Cambridge University Press, Cambridge, England. 

Pearson, K. (Editor) (1968), Tables of the Incomplete Beta-Function, 
Cambridge, England, 505 pp. 

83 



The effect of changing sample size on the probability distribution 
A 

ofF is apparent from tables I - V. As the sample size increases, the 

variance of the distribution decreases. This pattern is present for the 

three different true seeding factors considered. Instead of graphing 

the probabilities, it is informative to graph the probability density 

functions. Figures 1 to 3 illustrate the results. The decrease in 

dispersion as the sample size increases is again illustrated. Also, for 

a fixed sample size, the dispersion increases with increased seeding 

factor. This is most notable when comparing the curves for 

(n =50 and F = 1.0) and (n =50 and F = 3.008). This is expected since 
A 

the variance of F is 

Table All-VI. Percent Probability That The Sample Seeding 
Factor Will Exceed F When The True Seeding Factor Is 
2.0 (i.e., a= 1.0, 0 S = .00364, S = .00182). a s 

SamEle Size n 
Fa 5 10 20 50 

0.0 100.00 100.00 100.00 100.00 
0.5 98.042 99.842 99-999 100.00 
0.8 91.763 97.657 99-763 100.00 
1.2 78.328 86.885 94.447 99.414 
1.5 67.103 73.691 81.635 92.347 
2.0 50.000 50.000 50.000 50.000 
2.5 36.555 31.141 24.220 13.427 
3.0 26.657 18.609 10.206 2. 193 
4.0 14.494 6.495 1. 56 7 0.033 
5.0 8.236 2.342 0.237 0.000 
6.0 4.893 0.890 0.037 0.000 
7.0 3.044 0. 367 0.007 0.000 
8.0 1 .958 0.158 0.001 0.000 
9.0 1. 309 0.074 0.000 0.000 

10.0 0.900 0.036 0.000 0.000 
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Table AII-IV. Peraent FTobability That The Sample Seeding Faator Will 
Exaeed F0 When The True Seeding Faator is 3.008 (i.e., a= .6, S

0 
= 

.00121, ·sa= .00364). 

Same1e Size n 
Fo 5 10 20 50 
0.0 100.00 100.00 100.00 100.00 
0.5 97.68 99.79 99.99 100.00 
0.8 93.41 98.51 99.90 100.00 
1.2 85.59 93-73 98.56 99-97 
1.5 79. 10 87.87 95.24 99.60 
2.0 68.37 75.49 83.79 94. 15 
2.5 58.60 62.31 67.28 76.15 
3.0 50.13 50. 18 50.26 50.42 
4.o 36.91 31.47 24.53 ]3.65 
5.0 27.63 19.57 11 . 05 2.60 
6.0 21 .08 12. 31 4.89 0.43 
7.0 16.38 7.89 2. 18 0.07 
8.0 12.96 5. 18 1.01 0.01 
9-0 10.41 3-47 0.47 0.00 

10.0 8.48 2.38 0.23 0.00 

Table All-V. Peraent Probability That The Sample Seeding 
Faator Will Exaeed F When The True Seeding Faator Is 
2.0 (i.e., a= .6, 0 S = .00364, S = .OOl82). a s 

Fo 5 
Same1e Size n 

20 50 
0.0 100.00 100.00 100.000 100.000 
0.5 94.208 98.835 99.940 100.000 
0.8 85.525 93.673 98.542 99-973 
1.2 72.475 80.553 89.070 97.462 
1.5 63.209 68.688 75.670 86.562 
2.0 50.000 50.000 50.000 50.000 
2.5 39.670 35.262 29.453 19.563 
3.0 31.744 24.650 16.364 5-955 
4.0 20.992 12.221 4.824 0.416 
5.0 14.476 6.326 1. 458 0.027 
6.0 10.351 3.433 0.465 0.002 
7.0 7.646 1.964 0. 163 0.000 
8.0 5. 792 1. 165 0.060 0.000 
9.0 4.494 0.724 0.024 0.000 

10.0 3.556 0.465 0.010 0.000 
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-----------------------------------

Table All-II. Pereent Probability That The Sample Seeding 
Faetor Lies Within the Speeified Intervals As A Funetion 
of Sample Size fol' The Raw Data (i.e., a = . 6, ss = se 
= .00364). 

n 5 10 20 50 

0 - 0.5 20.993 12.216 4.821 0.415 
0.5 - o. 8 18.779 23.046 24.632 19.131 
0.8 - 1.2 18.619 26.881 37.609 56.301 
l. 2 - 1.5 9.865 13.207 16.574 18. 198 
l. 5 - 2.0 10.748 12.434 ll. 543 5.540 
2.0 - 2.5 6.521 5.891 3.364 0.388 
2.5 - 3.0 4. 123 2.892 0.992 0.025 

> 3.0 10.352 3.433 0.465 0.002 
Mean 1.50 1.20 l. 09 l .034 
Varia nee 3-75 0.66 0.228 0.075 
Std. Deviation l .936 0.812 0.478 0.274 

Table A11-III. Pereent Probability That The Sample Seeding 
Faetor Lies Within Speeified Intervals When It Is Assumed 
That·•The True Seeding Faetor is 3. 008 (i.e., a = . 6, 
s = . 00121, s s = .00364). e 

Sample Size n 
Interval 5 10 20 50 
0.0 - 0.5 2.317 0.205 0.003 0.000 
0.5 - 0.8 4.278 l. 283 0.093 0.000 
0.8 - 1.2 7.813 4.785 l . 340 0.026 
l . 2 - 1.5 6.495 5.857 3.323 0.377 
1.5 - 2.0 10.728 12.378 ll . 450 5.443 
2.0 - 2.5 9. 771 ]3. 186 16.507 18.002 
2.5 - 3.0 8. 471 12. 123 17.022 25.736 
3.0 - 4.0 ]3.218 18.712 25.733 36.769 
4.0 - 5.0 9.279 ll .899 ]3.477 ll . 048 
5.0 - 6.0 6.548 7.259 6.162 2.177 
6.0 - 7.0 4.698 4.423 2. 710 0.362 
7.0 - 8.0 3.422 2. 709 l. 173 0.055 
8.0 - 9.0 2.556 l. 714 0.533 0.010 
9.0 - 10.0 l . 930 l . 091 0. 241 0.001 

> l 0.0 8.476 2.376 0.233 0.000 
Mean 4.512 3.610 3.282 3.112 
Variance 40.299 5.967 2.068 0.679 
Std. Deviation 5.824 2.443 l .438 0.824 
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F = 3.008 and A 

m E (F) 

20 3.282 
50 3. 112 

An unbiased estimator for the true seeding factor is possible if 

a is assumed known. Define 

F 
mc:t-1 A 

~F 

Then E(F) = ma- 1 E(F) =~=F. Usually, however, a must be estimated. 
ma Be 

It is possible to substitute in an estimate of a in determining F. 

A table analogous to table 14 in section 6 may be constructed 

from the distribution of F. The procedure followed is the same as in 

table I, the evaluation of probability statements of the form 

Pr[a :5_ F :5_ bl n,m,a,8s,i3cl· 

It is necessary to transform the probability statement into terms 

of a beta random variable and then make use of a table of the incomplete 

beta distribution. The necessary transformation is 

so that 

Pr[a :5_ F :5_ bl n,m,a,8s,8cl 

= Pr[(l + n8s b)-1< 8 < (1+ n8s a)-11 o o ] m8c - - m8c n,m,a,~s·~c 

where 8 has a beta distribution with parameters ma and na. 
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A 

the sample seeding factor is defined as F Rs/Rc. The sampling distribu-
A 

tion ofF is easily determined by recognizing that Rs and Rc are independ-

ent gamma distributions with parameters n~, nSs and m~, mSc respectively. 

Hence, except for a constant, depending upon the parameters, F has essent-

ially Snedecor's F-distribution. That is, since 2nSsRs and 2mScRc have 

chi-square distributions, it follows that 

2nSsRs/ (2n~) 

2mScRc/ (2m~) 

Ss A 

=- F 
Sc 

has Snedecor's F-distribution with v 1 = 2n~ and v 2 = 2~ degrees of 

freedom. Hence, by specifying the parameters of the gamma distributions 
A 

and the sample sizes, the sampling distribution ofF is known to be 

Sc/S5 times a Snedecor's F-distribution. 

The mean and variance of Fs are determined from the mean and var­

iance of Snedecor's F-distribution 

m~ 

m~-1 

d{. m~ \
2 n~ + m~-j 

an \m~-1} n~ (m~-2) 

for m~>1 and m~>2 respectively. 

Hence <F> 

and 

A 

= E (F) = Sc m~ 
~ m~-1 

n~+m~-1 

n~(m~-2) 

for m~>1 and m~>2 respectively. ln general, E(F)>F so that on the average 

if F is the estimator for seeding factor, then the actual seeding factor 

is being overestimated. As the control sample size increases, the bias 

decreases. For example, let~= .6, Ss = .00121 and Sc = .00364, then 
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Table All-I. Percent Probability That The Sample Mean of n 
Cases Lies Within Specified Limits of <R>. (Probabilities 
Obtained From Gamma Tables,) 

A. Raw data (a = • 6' 13 = .00364) 

n <5% <10% <20% >30% <1/2 >2 

5 8.218 ]3. 420 26.696 60.350 19. 115 6.197 
10 9.615 19. 128 37.493 45.728 8.392 2.034 
20 13.645 26.937 51 . 302 29. 154 2.009 0.252 
50 21.456 41.617 72.999 9.654 0.042 0.001 

B. Transformed data (a = 7, B 2.38620) 

n <5% <10% <20% >30% 

5 23.233 44.636 76.666 7.324 
10 32.425 59.805 90.732 ]. 266 
20 44.600 7].090 98.192 0.057 
50 65.064 93.885 99.976 0.000 

The second major investigation concerns the natural variability of 
A 

the sample seeding factor F. In section 6 a simulated "seeding" experimen 

was performed using the assumption that the rainfall observations were a 

random sample from a gamma distribution. It was assumed that the true 

seeding factor was one, i.e. that the control and seeded observations 

were from the same distribution. ln the following development the sampl-
A 

ing distribution ofF will be determined when it is assumed that the 

seeded rainfall Rs 1 , ... ' Rsn is a random sample of n observations from 

a gamma distribution with parameters a and Ss; and Rc
1

, ••• , Rem is a 

random sample of m observations from a gamma distribution with parameters 

a and Sc· Note that the shape parameters are identical for the two 

populations. 

The actual seeding factor is defined by F = <R>s/<R>c 13cli3s and 
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